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Abstract. A set of classical quantities that obey the Poisson brackets corresponding to  Lie 
commutation relations of the quantum group SU,(Z) are obtained in classical mechanics. 
They are ConstNCled in terms of a function Q(I') and conventional angular momenta 
which satisfy the classical correspondence of the Lie commutation relation of the Lie 
algebra ~ ( 2 ) .  There quantities are called the q-analogue angular momenta, and their 
conservation law is mentioned. We give an example of Q(12) that causes the classical 
9-analogue angular momenta to reduce to the conventional angular momenta while the 
y"",L""1 "sI"IIIIaIII"II p"""lr,sr )I - 11. y "dlll>Ilr*. 

.̂.._ A-=---.:-.. ^^_^ . . - I _  - :.L.. 

The quantum group SU,(Z) (also denoted as U,(SU(2))) plays an important role in 
statistical mechanics [l] and quantum integrable systems [2]. The quantum groups 
themselves are remarkable mathematical structures that emerged as algebraic abstrac- 
tions from the inverse scattering problem [3] and conformal field theory [4]. In the 
last few years, interest in quantum groups and their applications in physics has grown 
substantially. A crucial aspect is the realization of quantum groups in physics models. 
Biedenham, Macfarlane, Kulish, Damashinsky, Chaichian, Lukierski, Curtright, 
Zachos and Fairlie [5] have studied the q-boson realization and the so-called 'deforming 
functional' of SU,(2). Chen, Chang and Guo [6] gave the classical realization of 
SU,(2) via classical harmonic oscillators. It is of significance to research the structure 
of auantum groups in physics theory and to discuss the physical models that contain 
quantum groups. 

In this paper we study SU,(2) from the point of view of classical mechanics. It is 
well known that the angular momenta in usual Newtonian mechanics obey the Poisson 
bracket relations that can be looked upon as the classical correspondence of the Lie 
bracket commutator relation of the Lie algebra su(2). Following this, when the SU,(2) 
commutator relations are given, one may find a set of Poisson brackets of physical 
quantities in three-dimensional Newtonian mechanics which is just the correspondence 
of the Lie bracket relation of SU,(Z). We call these physical quantities the classical 
q-analogue angular momenta. In our discussion, the concrete physical model is not 
dealt with and the conclusion is universal. We also deal with the corresponding classical 
conversation law of the q-analogue angular momenta. 

We start from the quantum group SU,(2) that is generated algebraically by the 
quantities .i+, 1- and J, obeying ihe commuiaiioii reiation 
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where we note 
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y = l n q  (3) 

J, = f(J++ J - )  (4) 

Jy = , ( J + - J _ ) .  L1 ( 5 )  

and q is a real number. As in the angular representation, we define 

1 

The commutator relations (1) and (2) can also be written as 

[J , ,  A1 = iJ, 
[Jz, J,] = -iJ, 

i sinh yJz 
2 sinh f y  4.1 = - 7. 

Let us consider the mechanics of a particle moving in three-dimensional space. Its 

( 9 )  

where x, j? and z coordixates of the pa&!e i:: !hree-diEe:::in::a! space, px, py and pz 
are the corresponding momenta of the coordinates, and f labels the common time. We 
know that an arbitrary physical quantity s obeys the Jacobi equation [7] 

Hamiltonian can be expressed as 

H = H ( x ,  Y ,  z, p X .  P,.. PJ 

ds  Js 
d t  J f  + (s, H) _=_  

in which the Poisson bracket is defined as 

{ f  g}=--+--+ J f  J g  J f  J g  J f  J g  J f  J g  J f  J g  J f  J g  
J x  Jp, d y  Jp, Jz Jpz Jp, J x  Jp, J y  Jp. Jz  (11) 

f = f b ,  Y,  Z,PX,P,,PX, t )  

/* = YP, - ZPY 1, = ZP, - XP, L = XP, -YPx. (12) 

g = g ( x , Y , ~ , P x , P , , P z ,  t ) .  

In Newtonian mechanics, the angular momenta are specified in the following form: 

They satisfy 

{ I , ,  L) = 1, U*, 1J= -4  {L, 1J = 1,. (13) 

According to the principles of quantum mechanics [8], the correspondence between 
classical and quantum theory is given by 

(14) 

where F and G are the operators in quantum mechanics corresponding to f and g, 
and the Planck constant is chosen as h = 1. From (13) and (14) one has the commutation 
relations of the angular momentum operators L,, L, and L, in quantum mechanics, 

1 
{ f ,  g)*$F, GI 

[L,, L I = i L ,  [Ly,L,l=iLx [L,, L,l = iL, 

[L, L*1= *L* [L,, L-] =2L* (15) 

or 
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where 

L, = Lx f iLy. 

These commutation relations just determine the ordinary Lie algebra 4 2 ) .  If we make 
use of (6)-(8) and (14L the classical correspondence of the commutation relations of 
the quantum group SUJ2) can be deduced in the form 

{ j z , j A = j y  (16) 

{ j Z . j J = - j x  (17) 

{ j  .}--- 1 sinh yjz 
2 sinh f y  X ~ J Y  - 

in which j x ,  jy znd jr are the r!.ssicz! corresponding q..z!!ti!ies nf the gc!l.ratars i" 
SU,(2). We call j x ,  j, and j z  the classical q-analogue angular momenta. 

The purpose of our paper is to construct these classical q-analogue angular momenta 
j x ,  j ,  and j ,  in terms of the kinetic parameters of a particle moving in the usual 
three-dimensional space. Comparing the Poisson bracket relations (16)-( 18) with (13), 
we see that (16) and (17) are exactly the same as the former two equations of (13). 
Therefore, we can be assured that 

j ,  = l,. 

Using ( l l ) ,  (12), (16), (17) and (19) we obtain 

Let @ be a function of (x, y,  z, p x ,  p,, p z ) ,  which satisfies the vanishing Poisson bracket 
relation 

{ I z ,  01 = 0 (22) 

then it is easy to prove that when I, and satisfy (13), 

j ,  = lx@ j ,  = ly@ (23) 

also satisfy the Poisson bracket relations (20) and (21). In the following we will discuss 
what expressions of function 0 makes j x  and j ,  defined by (23) precisely satisfy the 
classical q-analogue Poisson bracket relation (18) .  

Using the well known relation 

{ r z ,  r:+r:}=o 
and from (22) we know that function @ should be chosen as a function of l, and l:+ l: 
only, i.e. 

@=@(X, Y )  (24) 

where 

x = l, Y = I : +  r: 
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Substituting (23) into (18), we have the partial differential equation 

Shengli Zhang and Yishi Duan 

1 sinh yX + X Q 2 = - -  
2 sinh f y  

Let us introduce 

Z = 0 2 .  (27) 
Equation (25) then becomes 

JZ 1 sinh yX 
2 JX JY 2 sinhfy 

J Z +  X Y  -+ xz  = - - 

The general solution of (27) can be expressed as follows [9]: 

where Q is an arbitrary differentiable function of argument ( Y  + X 2 ) .  From (12) and 
(25) we have 

(30) i2 = y + x 2  = r:+ r ;+  I : .  
Using (191, (231, (27), (29) and (30), the classical q-analogue angular momenta read 

j ,  = l,. 
It is easily verified that j , ,  j ,  and j z  obey (16)-(18) identically. From (31) we see that 
there is an arbitrary differentiable function Q(l’) in this expression. Choosing different 
Q(12), one can define formulae of the classical q-analogue angular momenta. In an 
inverse procedure, when one quantizes the classical system with j , ,  j ,  and jz defined 
by (31) and the Poisson bracket relations (16)-(18), the quantum q-analogue angular 
momenta with the Lie bracket relations obtained from (15), i.e. (6)-(8), realize the 
quantum group SU,(2). 

Let us now deal with a simple case. Since SU,(2) contracts to the Lie algebra su(2) 
in the limit q + 1 (i.e. y + O ) ,  the classical q-analogue angular momenta should become 
the conventional angular momenta. This condition can be expressed as 

lim @ = 1.  (32) 
7-0 

Using (321, it is easy to see that the function Q(12) can be chosen as 

and the classical q-analogue angular momenta should take the following form: 
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This is just the classical limit ( h  -f 0 with fixed y )  of the quantum expressions for the 
SU,(2) generators given by Babujian and Tsevelik [IO]. 

Also of interest is in what system the classical q-analogue angular momenta are 
conserved. For these q-analogue angular momenta j this knowledge is necessary. First, 
although j has been expressed as a function of I,  and thus we know that j will be 
conserved whenever I is conserved, we do not know whether there is another case 
where j will he conserved when I is not conserved. Secondly, we also want to know 
in what condition each component of I is conserved. Since these q-analogue angular 
momenta are independent of time 1, from the Jacobi equation (10) we deduce that in 
the case of 

they are conserved. 

space can be written as follows: 
Generally speaking, the Hamiltonian of a particle moving in three-dimensional 

1 
m 

H = - p 2 +  V ( x ,  y ,  2 )  

where m stands for the mass of the particle and V ( x ,  y, z )  is an arbitrary potential 
function. In this case (35) become 

1 cosh y/, 

y cosh $y  

av J V  y - - x - = o  
Jx dy 

where 

Q'=- dQ 
d(12)' 

(37) 

(38 )  

From the above formulae we see that the conservation conditions of the classical 
q-analogue angular momenta are not all the same as those of the conventional angular 
momenta. This highlights the difference between conventional q-analogue and angular 
momenta. Of course, this difference also means that there is disparity between the 
quantum group SU,(2) and the Lie algebra 4 2 ) .  
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However, if the potential function V ( x ,  y ,  z) is a central symmetry field, the classical 
q analogue angular momenta (31) are conserved naturally. Except for this case, only 
the potential function V ( x ,  y ,  z) cannot determine whether j is conserved. We note 
that for a given potential function V ( x ,  y ,  z) the properties of function Q ( 1 ' )  and I 
play an important role in showing whether the classical q-analogue angular momenta 
j., j ,  and jz are conserved. 

In this paper we have found three classical mechanics quantities j , ,  j ,  and j ,  that 
satisfy the Poisson bracket relations corresponding to the Lie bracket relations of the 
quantum group SU,(2). These classical mechanics quantities are given by (31), and 
are called classical q-analogue angular momenta, and are determined by the differenti- 
able function Q(1 ' )  and the conventional three-dimensional angular momenta I , ,  I, 
and I , .  As an example, we determined a fixed 40') that made the classical q-analogue 
angular momenta (34) reduce to the conventional angular momenta while the quantum 

the above-mentioned classical q-analogue angular momenta, which is expressed as 
(36)-(38). Generally speaking, whether j is conserved is determined not only by the 
potential function but also by Q( 1') and the angular momenta I. 

When one quantizes the q-analogue angular momenta, the realization of the quan- 
tum group SU,(2) will be obtained in quantum mechanics. This is an interesting topic 
that will be discussed elsewhere. 
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